Perturbation theory for bright spinor Bose-Einstein condensate solitons

نویسندگان

  • Evgeny V. Doktorov
  • Jiandong Wang
  • Jianke Yang
چکیده

We develop a perturbation theory for bright solitons of the F=1 integrable spinor Bose-Einstein condensates BEC model. The formalism is based on using the Riemann-Hilbert problem and provides the means to analytically calculate evolution of the soliton parameters. Both rank-one and rank-two soliton solutions of the model are obtained. We prove equivalence of the rank-one soliton and the ferromagnetic rank-two soliton. Taking into account a splitting of a perturbed polar rank-two soliton into two ferromagnetic solitons, it is sufficient to elaborate a perturbation theory for the rank-one solitons only. Treating a small deviation from the integrability condition as a perturbation, we describe the spinor BEC soliton dynamics in the adiabatic approximation. It is shown that the soliton is quite robust against such a perturbation and preserves its velocity, amplitude, and population of different spin components, only the soliton frequency acquires a small shift. Results of numerical simulations agree well with the analytical predictions, demonstrating only slight soliton profile deformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitons for nearly integrable bright spinor Bose-Einstein condensate

‎Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation‎, ‎soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates‎. ‎A small disturbance of the integrability condition can be considered as a small correction to the integrable equation‎. ‎By choosing appropriate perturbation‎, ‎the soli...

متن کامل

Matter-Wave Bright Solitons with a Finite Background in Spinor Bose-Einstein Condensates

We investigate dynamical properties of bright solitons with a finite background in the F = 1 spinor Bose-Einstein condensate (BEC), based on an integrable spinor model which is equivalent to the matrix nonlinear Schrödinger equation with a self-focusing nonlineality. We apply the inverse scattering method formulated for nonvanishing boundary conditions. The resulting soliton solutions can be re...

متن کامل

Dark-bright solitons and vortices in Bose-Einstein condensates

DARK-BRIGHT SOLITONS AND VORTICES IN BOSE-EINSTEIN CONDENSATES MAY 2014 DONG YAN B.S., ZHEJIANG UNIVERSITY, CHINA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Panayotis G. Kevrekidis This dissertation focuses on the properties of nonlinear waves in Bose-Einstein condensates (BECs). The fundamental model here is the nonlinear Schrödi...

متن کامل

Vortex rings and vortex ring solitons in shaken Bose-Einstein condensate

In a shaken Bose-Einstein condensate, confined in a vibrating trap, there can appear different nonlinear coherent modes. Here we concentrate on two types of such coherent modes, vortex ring solitons and vortex rings. In a cylindrical trap, vortex ring solitons can be characterized as nonlinear Hermite-Laguerre modes, whose description can be done by means of optimized perturbation theory. The e...

متن کامل

Multi Solitons of a Bose-Einstein Condensate in a Three-Dimensional Ring

A Bose-Einstein Condensate (BEC) made of alkali-metal atoms at ultra-low temperatures is well described by the three-dimensional cubic nonlinear Schrödinger equation, the so-called Gross-Pitaevskii equation (GPE). Here we consider an attractive BEC in a ring and by solving the GPE we predict the existence of bright solitons with single and multi-peaks, showing that they have a limited domain of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008